0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Computer Vision-based Algorithm for Deformation Monitoring in Bridge Construction Research

 Computer Vision-based Algorithm for Deformation Monitoring in Bridge Construction Research
Autor(en): , , , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 778-784
DOI: 10.2749/sanjose.2024.0778
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.52 MB

The aim of this paper is to present a methodology for the detection of deformations in bridges during construction. Using the YOLOv5 model, a detection and localization model was trained to identif...
Weiterlesen

Bibliografische Angaben

Autor(en): (China Railway Major Bridge Engineering Group Co., Ltd., Tianjin, China)
(China Railway Major Bridge Engineering Group Co., Ltd., Tianjin, China)
(China Railway Major Bridge Engineering Group Co., Ltd., Tianjin, China)
(Department of Bridge Engineering, College of Civil Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering, College of Civil Engineering, Tongji University, Shanghai, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 778-784 Anzahl der Seiten (im PDF): 7
Seite(n): 778-784
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/sanjose.2024.0778
Abstrakt:

The aim of this paper is to present a methodology for the detection of deformations in bridges during construction. Using the YOLOv5 model, a detection and localization model was trained to identify checkerboard targets. Relevant features were then extracted from the detected target patterns. To determine changes in target poses, the correspondence was established between 3D world coordinates and 2D pixel coordinates. Utilizing this correspondence, the real-time target poses were calculated, providing valuable insights into the magnitude and direction of deformations. The proposed visual deformation measurement method is dependent on the target and the camera, enabling real-time and cost-effective measurements of target displacement. The experimental results demonstrated the efficacy of our approach, which exhibited remarkable accuracy and robustness.