0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Comparison on outlier detection methods using measured data from a long span tied-arch bridge

 Comparison on outlier detection methods using measured data from a long span tied-arch bridge
Autor(en): , , , , ORCID
Beitrag für IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021, veröffentlicht in , S. 497-503
DOI: 10.2749/ghent.2021.0497
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.19 MB

As the demand for the detections of outliers in the structural health monitoring data-set increases, numerous approaches are presented for it. However, the characteristics of the existing methods d...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
(Shanghai Road and Bridge (Group) Co., Ltd., Shanghai 200433, China)
(Shanghai Road and Bridge (Group) Co., Ltd., Shanghai 200433, China)
(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
ORCID (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021
Veröffentlicht in:
Seite(n): 497-503 Anzahl der Seiten (im PDF): 7
Seite(n): 497-503
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/ghent.2021.0497
Abstrakt:

As the demand for the detections of outliers in the structural health monitoring data-set increases, numerous approaches are presented for it. However, the characteristics of the existing methods dealing with different kinds of measured data are not yet clear enough for practical use. Therefore, this paper conducts a comparative study of several popular rule-based methods based on monitoring data of an arch-tied bridge in China. For measured data, outliers are not known in advance. In this way, this study evaluates and compares the detection performances rely on two indicators: the quantity of the detected outliers and the extreme value of the outliers deviating from the mean of the data. Conclusions on the features and applicable situations of involved methods are given. Additionally, combining the results of different methods proves to be beneficial. Finally, a software incorporating the research results is developed for outlier detection.

Copyright: © 2021 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.