0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Automated Crack Detection Method Based on Deep Learning and 3D Reconstruction for Concrete Bridges

 Automated Crack Detection Method Based on Deep Learning and 3D Reconstruction for Concrete Bridges
Autor(en): , , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1506-1513
DOI: 10.2749/nanjing.2022.1506
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.18 MB

Automated image-based bridge crack detection, as a promising technique, can be used to overcome the limitations of human visual inspection. However, results from current image-based methods are gen...
Weiterlesen

Bibliografische Angaben

Autor(en): (College of Civil Engineering, Hunan University, Changsha, Hunan Province, China)
(College of Civil Engineering, Hunan University, Changsha, Hunan Province, China; Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, China Hunan University, Changsha, China)
(College of Civil Engineering, Hunan University, Changsha, Hunan Province, China; Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, China Hunan University, Changsha, China)
(College of Civil Engineering, Hunan University, Changsha, Hunan Province, China; Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, China Hunan University, Changsha, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1506-1513 Anzahl der Seiten (im PDF): 8
Seite(n): 1506-1513
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/nanjing.2022.1506
Abstrakt:

Automated image-based bridge crack detection, as a promising technique, can be used to overcome the limitations of human visual inspection. However, results from current image-based methods are generally localized and lack 3D geometric information, which makes it difficult for structural assessment. To solve this issue, a crack detection method that combines deep learning and 3D reconstruction is proposed in this paper. Firstly, a 2D feature-based approach is developed to extract keyframes from the video adaptively. Secondly, a segmentation network is implemented to conduct pixel-level crack segmentation. Finally, image-based 3D reconstruction and crack mapping are used to create the 3D structure model with crack semantics. A field experiment is also carried out on an in-service concrete bridge for validation and discussion of the proposed method. The 3D model created by the proposed method can significantly improve the crack inspection of concrete bridges.

Stichwörter:
Risserkennung
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.