0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Application of NLP Technology in the Information Extraction of Bridge Management and Maintenance Documents

 Application of NLP Technology in the Information Extraction of Bridge Management and Maintenance Documents
Autor(en): , , ORCID
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1224-1230
DOI: 10.2749/nanjing.2022.1224
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.18 MB

Bridge management and maintenance document is the accumulation of authoritative technical data to record the history of bridge operation, current technical status and management and maintenance pro...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
(Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
ORCID (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 200092, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1224-1230 Anzahl der Seiten (im PDF): 7
Seite(n): 1224-1230
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/nanjing.2022.1224
Abstrakt:

Bridge management and maintenance document is the accumulation of authoritative technical data to record the history of bridge operation, current technical status and management and maintenance process, which contains substantial information to support bridge maintenance decision. With more and more extensive application of bridge health monitoring in civil engineering industry, bridge management and maintenance documents become more common and quantitative. Therefore, a large number of these reports need to be manually read and analyzed to obtain effective information, which will waste a lot of effort. In order to improve this situation, this paper develops a frequency state analyzer using LSTM neural network to classify these documents automatically, and improve the efficiency of bridge management and maintenance work.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.