0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Application of a Model-free ANN Approach for SHM of the Old Lidingö Bridge

 Application of a Model-free ANN Approach for SHM of the Old Lidingö Bridge
Autor(en): , , ,
Beitrag für IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019, veröffentlicht in , S. 200-211
DOI: 10.2749/guimaraes.2019.0200
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.7 MB

This paper explores the decision making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measure...
Weiterlesen

Bibliografische Angaben

Autor(en): (KTH Royal Institute of Technology, Stockholm, Sweden)
(KTH Royal Institute of Technology, Stockholm, Sweden)
(KTH Royal Institute of Technology, Stockholm, Sweden)
(KTH Royal Institute of Technology, Stockholm, Sweden)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019
Veröffentlicht in:
Seite(n): 200-211 Anzahl der Seiten (im PDF): 12
Seite(n): 200-211
Anzahl der Seiten (im PDF): 12
DOI: 10.2749/guimaraes.2019.0200
Abstrakt:

This paper explores the decision making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system.

Artificial Neural Networks are trained and their ability to predict structural behaviour is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.