0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Analysis of Machine Learning for Detect Concrete Crack Depths Using Infrared Thermography Technique

 Analysis of Machine Learning for Detect Concrete Crack Depths Using Infrared Thermography Technique
Autor(en): , , , ,
Beitrag für IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022, veröffentlicht in , S. 758-765
DOI: 10.2749/prague.2022.0758
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.21 MB

Recently, much research with high-tech technology is being conducted in building inspection. In previous studies, thermography technology quickly and accurately inspected the concrete crack defects...
Weiterlesen

Bibliografische Angaben

Autor(en): (Korea University, Department of Civil Environmental and Architectural Engineering, Seoul, Republic of Korea)
(Korea University, Department of Civil Environmental and Architectural Engineering, Seoul, Republic of Korea)
(Korea University, School of Civil Environmental and Architectural Engineering, Seoul, Republic of Korea)
(Korea University, School of Civil Environmental and Architectural Engineering, Seoul, Republic of Korea)
(Korea University, Department of Civil Environmental and Architectural Engineering, Seoul, Republic of Korea)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022
Veröffentlicht in:
Seite(n): 758-765 Anzahl der Seiten (im PDF): 8
Seite(n): 758-765
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/prague.2022.0758
Abstrakt:

Recently, much research with high-tech technology is being conducted in building inspection. In previous studies, thermography technology quickly and accurately inspected the concrete crack defects, and several machine learning models can reliably predict the crack depths. In this study, the most proper model would be proposed according to the concrete crack by evaluating the adaptability of the seven machine learning models. The models also predicted the crack depths, and the data were applied to each machine learning considering concrete temperature and external parameters. In machine learning, less critical features were ignored by filtering existing data to find useful features related to crack depths. Machine learning models are evaluated, and the structures of the models were investigated to determine the feature importance and part dependence. Those enabled us to decide the most proper machine learning according to the cracks.

Stichwörter:
Bauwerksinspektion
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.