Water vapour permeability of inorganic construction materials
Autor(en): |
Christopher Hall
Gloria J. Lo Andrea Hamilton |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Materials and Structures, 8 Februar 2024, n. 2, v. 57 |
DOI: | 10.1617/s11527-023-02281-y |
Abstrakt: |
Water vapour permeability (WVP) data on brick, stone, plaster and cement-based materials from some seventy publications are reviewed and assessed. Almost all sources use standard cup-test methods or close variants. Comparisons of WVP values from different sources on similar materials confirm that reproducibility between different laboratories is poor. Some deficiencies of cup-test methods are discussed, including uncertainties arising from the use of saturated-salt humidistats and desiccants. There is evidence that the water vapour resistance factor decreases as volume_fraction porosity increases, and data support a simple porosity–tortuosity relation. Data also show that the resistance factor decreases with increasing mean relative humidity across the test specimen, with the wet-cup value consistently lower than the dry-cup values for a given material. The contribution of liquid film flow to mass transfer is discussed. It is shown how film thickness and film-flow permeability may be estimated from the water-vapour sorption isotherm; and a related regression equation is developed It is concluded that available data are inadequate to establish the fundamental physics of WVP; vapour-only permeability data for engineering purposes should be obtained in dry-cup tests at low humidity; and research studies should aim to integrate the WVP into the framework of unsaturated flow theory. |
- Über diese
Datenseite - Reference-ID
10770125 - Veröffentlicht am:
29.04.2024 - Geändert am:
29.04.2024