Understanding Multi-Vehicle Collision Patterns on Freeways—A Machine Learning Approach
Autor(en): |
Clint Morris
Jidong J. Yang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, August 2020, n. 8, v. 5 |
Seite(n): | 62 |
DOI: | 10.3390/infrastructures5080062 |
Abstrakt: |
Generating meaningful inferences from crash data is vital to improving highway safety. Classic statistical methods are fundamental to crash data analysis and often regarded for their interpretability. However, given the complexity of crash mechanisms and associated heterogeneity, classic statistical methods, which lack versatility, might not be sufficient for granular crash analysis because of the high dimensional features involved in crash-related data. In contrast, machine learning approaches, which are more flexible in structure and capable of harnessing richer data sources available today, emerges as a suitable alternative. With the aid of new methods for model interpretation, the complex machine learning models, previously considered enigmatic, can be properly interpreted. In this study, two modern machine learning techniques, Linear Discriminate Analysis and eXtreme Gradient Boosting, were explored to classify three major types of multi-vehicle crashes (i.e., rear-end, same-direction sideswipe, and angle) occurred on Interstate 285 in Georgia. The study demonstrated the utility and versatility of modern machine learning methods in the context of crash analysis, particularly in understanding the potential features underlying different crash patterns on freeways. |
Copyright: | © 2020 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.78 MB
- Über diese
Datenseite - Reference-ID
10723180 - Veröffentlicht am:
22.04.2023 - Geändert am:
10.05.2023