Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests
Autor(en): |
Piervincenzo Rizzo
Marcello Cammarata Ivan Bartoli Francesco Lanza di Scalea Salvatore Salamone Stefano Coccia Robert Phillips |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2010, v. 2010 |
Seite(n): | 1-13 |
DOI: | 10.1155/2010/291293 |
Abstrakt: |
Recent train accidents have reaffirmed the need for developing a rail defect detection system more effective than that currently used. One of the most promising techniques in rail inspection is the use of ultrasonic guided waves and noncontact probes. A rail inspection prototype based on these concepts and devoted to the automatic damage detection of defects in rail head is the focus of this paper. The prototype includes an algorithm based on wavelet transform and outlier analysis. The discrete wavelet transform is utilized to denoise ultrasonic signals and to generate a set of relevant damage sensitive data. These data are combined into a damage index vector fed to an unsupervised learning algorithm based on outlier analysis that determines the anomalous conditions of the rail. The first part of the paper shows the prototype in action on a railroad track mock-up built at the University of California, San Diego. The mock-up contained surface and internal defects. The results from three experiments are presented. The importance of feature selection to maximize the sensitivity of the inspection system is demonstrated here. The second part of the paper shows the results of field testing conducted in south east Pennsylvania under the auspices of the U.S. Federal Railroad Administration. |
Copyright: | © 2010 Piervincenzo Rizzo et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.33 MB
- Über diese
Datenseite - Reference-ID
10177023 - Veröffentlicht am:
07.12.2018 - Geändert am:
02.06.2021