0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Toward machine learning based decision support for pre‐grouting in hard rock

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: civil engineering design, , n. 3, v. 6
Seite(n): 63-73
DOI: 10.1002/cend.202400012
Abstrakt:

Pre‐grouting in hard rock tunneling is crucial for mitigating water ingress, significantly affecting project time and cost. Predicting pre‐grouting requirements is challenging and relies heavily on the expertise of on‐site personnel for decision‐making. This paper explores using supervised machine learning (ML) to create a data‐driven pre‐grouting decision process, aiming to predict “grouting time” and “total grout take.” Tree‐based regression models were developed using data from a Norwegian railway project, including typical tunneling data. These models showed limited predictive performance, with R² scores of 0.40, though a significant relationship was observed. The limited performance highlights the need to identify parameters that significantly impact grouting outcomes rather than indicating the unsuitability of tree‐based models. Future research should consider a larger data set and additional parameters, such as more data on rock mass quality, hydrogeological conditions ahead of the face, and human, organizational, and contractual factors. Despite initial findings, supervised ML shows promise in enhancing data‐driven decision‐making in pre‐grouting by using appropriate input features and target variables.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/cend.202400012.
  • Über diese
    Datenseite
  • Reference-ID
    10804268
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine