0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Theoretical modeling and experimental investigation of carbon fiber reinforced plastic-based piezoelectric actuator

Autor(en): ORCID
ORCID


ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 4, v. 33
Seite(n): 045032
DOI: 10.1088/1361-665x/ad31d1
Abstrakt:

Piezoelectric actuators based on non-metallic materials have drawn much attention in recent years. Carbon fiber reinforced plastic (CFRP) is one of the ideal materials for the development of lightweight, high power density piezoelectric actuators because of its low density, high stiffness. However, its anisotropic characteristics pose a challenge in actuator development. In this study, we designed a CFRP-based piezoelectric actuator, which utilizes hybrid modes of first_order longitudinal mode and second-order bending mode. The electromechanical coupling dynamic model for CFRP-based piezoelectric actuator was established a, based on the modal superposition method and energy method, and while taking into account the stress-strain relationships in anisotropic materials. The size of the actuator was calculated through the model and a prototype was processed for experimental research. The experimentally obtained results of frequencies and transient- as well as steady-state vibration characteristics demonstrated excellent agreement with the predictions of our mathematical modeling. Actuator performance evaluation results show that under a single-phase excitation voltage of 200 Vp-p, the CFRP-based actuator can reach maximum speed, thrust force, output power, thrust–weight ratio, power density, and efficiency of 617 mm s−1, 65 N, 1.14 W, 980.3 N kg−1, 223.5 W kg−1, and 10.4%, respectively. These results are satisfactory compared with actuators in other reports, especially the power density, which is nearly tripled. These results demonstrate the superior performance of the CFRP-based actuator and illustrate a new approach for developing lightweight and powerful actuators.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ad31d1.
  • Über diese
    Datenseite
  • Reference-ID
    10769297
  • Veröffentlicht am:
    29.04.2024
  • Geändert am:
    29.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine