Theoretical and Numerical Investigation of Damage Sensitivity of Steel–Concrete Composite Beam Bridges
Autor(en): |
Zhibo Guo
Jianqing Bu Jiren Zhang Wenlong Cao Xiaoming Huang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 27 April 2023, n. 5, v. 13 |
Seite(n): | 1109 |
DOI: | 10.3390/buildings13051109 |
Abstrakt: |
To investigate the sensitivity of the overall mechanical performance of steel–concrete composite beam bridges (SCCBBs) to different types of damage, this paper proposes a method of analyzing the sensitivity of SCCBBs to damage based on the extremely randomized trees (ET) algorithm in machine learning. A steel–concrete composite continuous beam bridge was used as the engineering basis, and the finite element method was used to analyze the changes in the static and dynamic response of the bridge caused by seven types of damage. The proposed SCCBB damage sensitivity analysis theory was used to explore the sensitivity factors of the seven types of damage. The results show that microcracks in steel beams have the most significant impact on the mechanical performance sensitivity of SCCBBs, followed by the concrete slab stiffness degradation and bridge deck breakage. The sensitivity of the damage caused by transverse diaphragms and bridge pier stiffness degradation is relatively low, while the sensitivity of stud fractures and bearing damage is minimal. The impact factors of damage sensitivity were 0.51, 0.19, 0.13, 0.08, 0.05, 0.03 and 0.01. This research can provide a reference for the damage classification of SCCBBs with multiple damage interlacing. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.18 MB
- Über diese
Datenseite - Reference-ID
10728316 - Veröffentlicht am:
30.05.2023 - Geändert am:
01.06.2023