Systematic Review of Quantitative Risk Quantification Methods in Construction Accidents
Autor(en): |
Louis Kumi
Jaewook Jeong Jaemin Jeong |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 Oktober 2024, n. 10, v. 14 |
Seite(n): | 3306 |
DOI: | 10.3390/buildings14103306 |
Abstrakt: |
Construction accidents pose significant risks to workers and the public, affecting industry productivity and reputation. While several reviews have discussed risk assessment methods, recent advancements in artificial intelligence (AI), big data analytics, and real-time decision support systems have created a need for an updated synthesis of the quantitative methodologies applied in construction safety. This study systematically reviews the literature from the past decade, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A thorough search identified studies utilizing statistical analysis, mathematical modeling, simulation, and artificial intelligence (AI). These methods were categorized and analyzed based on their effectiveness and limitations. Statistical approaches, such as correlation analysis, examined relationships between variables, while mathematical models, like factor analysis, quantified risk factors. Simulation methods, such as Monte Carlo simulations, explored risk dynamics and AI techniques, including machine learning, enhanced predictive modeling, and decision making in construction safety. This review highlighted the strengths of handling large datasets and improving accuracy, but also noted challenges like data quality and methodological limitations. Future research directions are suggested to address these gaps. This study contributes to construction safety management by offering an overview of best practices and opportunities for advancing quantitative risk assessment methodologies. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.39 MB
- Über diese
Datenseite - Reference-ID
10804831 - Veröffentlicht am:
10.11.2024 - Geändert am:
25.01.2025