0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Systematic Mapping of Global Research on Disaster Damage Estimation for Buildings: A Machine Learning-Aided Study

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 14
Seite(n): 1864
DOI: 10.3390/buildings14061864
Abstrakt:

Research on disaster damage estimation for buildings has gained extensive attention due to the increased number of disastrous events, facilitating risk assessment, the effective integration of disaster resilience measures, and policy development. A systematic mapping study has been conducted, focusing on disaster damage estimation studies to identify trends, relationships, and gaps in this large and exponentially growing subject area. A novel approach using machine learning algorithms to screen, categorise, and map the articles was adopted to mitigate the constraints of manual handling. Out of 8608 articles from major scientific databases, the most relevant 2186 were used in the analysis. These articles were classified based on the hazard, geographical location, damage function properties, and building properties. Key observations reveal an emerging trend in publications, with most studies concentrated in developed and severely disaster-affected countries in America, Europe, and Asia. A significant portion (68%) of the relevant articles focus on earthquakes. However, as the key research opportunities, a notable research gap exists in studies focusing on the African and South American continents despite the significant damage caused by disasters there. Additionally, studies on floods, hurricanes, and tsunamis are minimal compared to those on earthquakes. Further trends and relationships in current studies were analysed to convey insights from the literature, identifying research gaps in terms of hazards, geographical locations, and other relevant parameters. These insights aim to effectively guide future research in disaster damage estimation for buildings.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10794976
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    25.01.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine