Synthesis of Geopolymer Based Class-F Fly Ash Aggregates and its Composite Properties in Concrete
Autor(en): |
P. Gomathi
A. Sivakumar |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Archives of Civil Engineering, März 2014, n. 1, v. 60 |
Seite(n): | 55-75 |
DOI: | 10.2478/ace-2014-0003 |
Abstrakt: |
This study explores the influence of alkali activators on the initiation of polymerization reaction of alumino-silicate minerals present in class-F fly ash material. Different types of fly ash aggregates were produced with silicate rich binders (bentonite and metakaolin) and the effect of alkali activators on the strength gain properties were analyzed. A comprehensive examination on its physical and mechanical properties of the various artificial fly ash aggregates has been carried out systematically. A pelletizer machine was fabricated in this study to produce aggregate pellets from fly ash. The efficiency and strength of pellets was improved by mixing fly ash with different binder materials such as ground granulated blast furnace slag (GGBS), metakaolin and bentonite. Further, the activation of fl y ash binders was done using sodium hydroxide for improving its binding properties. Concrete mixes were designed and prepared with the different fly ash based aggregates containing different ingredients. Hardened concrete specimens after sufficient curing was tested for assessing the mechanical properties of different types concrete mixes. Test results indicated that fly ash -GGBS aggregates (30S2-100) with alkali activator at 10M exhibited highest crushing strength containing of 22.81 MPa. Similarly, the concrete mix with 20% fly ash-GGBS based aggregate reported a highest compressive strength of 31.98 MPa. The fly ash based aggregates containing different binders was found to possess adequate engineering properties which can be suggested for moderate construction works. |
- Über diese
Datenseite - Reference-ID
10476955 - Veröffentlicht am:
25.11.2020 - Geändert am:
25.11.2020