Sustainable Architecture for Future Climates: Optimizing a Library Building through Multi-Objective Design
Autor(en): |
Yijia Miao
Zebin Chen Yiyong Chen Yiqi Tao |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 19 Juni 2024, n. 6, v. 14 |
Seite(n): | 1877 |
DOI: | 10.3390/buildings14061877 |
Abstrakt: |
In the context of the escalating challenge of climate change, optimizing buildings’ energy performance has become a critical research area, yet studies specifically targeting library buildings are scarce. This study addresses this gap by investigating the impact of multi-objective optimization on energy efficiency and occupant comfort in educational library buildings under future climate scenarios. Utilizing the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), this research optimizes a range of building parameters, including the cooling and heating setpoints, air change rates, shading device depths, window visible transmittance, and window gas types. The optimization aims to balance energy consumption and comfort, using simulations based on future weather data for the years 2020, 2050, and 2080. The results indicate that the optimized solutions can significantly reduce the heating energy by up to 95.34% and the cooling energy by up to 63.74% compared to the baseline models, while maintaining or improving the occupant comfort levels. This study highlights the necessity for dynamic, responsive architectural designs that can adapt to changing environmental conditions, ensuring both sustainability and occupant well-being. Furthermore, integrating these building-level optimizations into a City Information Model (CIM) framework can enhance urban planning and development, contributing to more resilient and energy-efficient cities. These findings underscore the importance of sustainable design practices in the context of climate change and the critical role of advanced optimization techniques in achieving energy-efficient, comfortable educational spaces. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.88 MB
- Über diese
Datenseite - Reference-ID
10795096 - Veröffentlicht am:
01.09.2024 - Geändert am:
01.09.2024