A Study on the Genetic Algorithm Optimization of an Asphalt Mixture’s Viscoelastic Parameters Based on a Wheel Tracking Test
Autor(en): |
Jinxi Zhang
Weiqi Zhou Dandan Cao Jia Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 17 Dezember 2023, n. 12, v. 8 |
Seite(n): | 169 |
DOI: | 10.3390/infrastructures8120169 |
Abstrakt: |
The generalized Maxwell (GM) constitutive model has been widely applied to characterize the viscoelastic properties of asphalt mixtures. The parameters (Prony series) of the GM are usually obtained via interconversion between a dynamic modulus and relaxation modulus, and they are then input to a finite element model (FEM) as viscoelastic parameters. However, the dynamic modulus obtained with the common loading mode only provides the compressive and tensile properties of materials. Whether the compression or tensile modulus can represent the shear properties of materials related to flow rutting is still open to discussion. Therefore, this study introduced a novel method that integrates the Kriging model into the genetic algorithm as a surrogate model to determine the viscoelastic parameters of an asphalt mixture in rutting research. Firstly, a wheel tracking test (WTT) for AC-13 was conducted to clarify the flow rutting development mechanism. Secondly, two sets of the AC-13 viscoelastic parameters obtained through the optimization method and the dynamic modulus were used as inputs into the FEM simulation of the WTT to compare the simulation results. Finally, a sensitivity analysis of viscoelastic parameters was performed to improve the efficiency of parameter optimization. The results indicating the viscoelastic parameters obtained by this method could precisely characterize the development law of flow rutting in asphalt mixtures. |
Copyright: | © 2023 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.06 MB
- Über diese
Datenseite - Reference-ID
10756620 - Veröffentlicht am:
08.01.2024 - Geändert am:
07.02.2024