0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A study on stabilizing mechanism of flap countermeasures mitigating VIV of a box girder bridge section

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: IOP Conference Series: Materials Science and Engineering, , n. 1, v. 1289
Seite(n): 012008
DOI: 10.1088/1757-899x/1289/1/012008
Abstrakt:

As bridge spans stretch, the structure becomes more flexible and susceptible to dynamic wind effects causing harmful wind-induced vibration. The biggest issue with the design of long-span bridges is the possibility of vibration caused by vortices. This study examines the mechanism of the decrease in the amplitude of vortex-induced vibration for the box girder using a flap countermeasure. Aerodynamic countermeasures such as a flap have successfully increased bridge deck aerodynamic stability. However, their stabilizing mechanism has yet to be fully understood. Based on the proposed approach, a wind tunnel experiment and a CFD technique are used to investigate the aerodynamic instability of the bridge girder in the presence of aerodynamic countermeasures. The flow fields surrounding the bridge deck, both with and without the flap, are examined, and the experiment outcomes are compared. Flow imagery is utilized to explain and understand the modified flow properties surrounding the bridge girder in the presence of aerodynamic countermeasures that minimize vibration amplitude. Indeed, installing flaps on a girder leads to increased turbulence over the surface and at the leeward side, which disrupts vortex formation and decreases lift forces on the structure. In addition, the results revealed that the efficiency of the flap is related to the installed location of the flap and the flap length. This research provides a reliable framework for designing the flap countermeasure and significantly improves the aerodynamic stability of a deck-flap system.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1757-899x/1289/1/012008.
  • Über diese
    Datenseite
  • Reference-ID
    10777327
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine