0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Structural Health Monitoring of an Advanced Grid Structure with Embedded Fiber Bragg Grating Sensors

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 4, v. 6
Seite(n): 309-324
DOI: 10.1177/1475921707081967
Abstrakt:

The authors focus on the construction of a structural health monitoring (SHM) system with an advanced grid structure (AGS) made of carbon-fiber reinforced plastic (CFRP). AGS is often applied to aerospace structures because the ribs carry only axial forces in the carbon fiber direction, making AGS structurally effective and lightweight, and because the repetition of many ribs in the AGS composition results in damage tolerance. The failure of a single rib hardly affects the fracture of the whole structure, making AGS a fail-safe structure. In this research, the authors have embedded multiplexed-fiber Bragg grating (FBG) sensors into an AGS rib in the longitudinal direction to measure mechanical strains of all ribs in order to detect the existence and regions of AGS rib fractures. Monitoring the change in rib-longitudinal strains is the most effective SHM system for AGS. To confirm the proposal, the authors explore the following. First, various damage characteristics under low-velocity impact loading are investigated and it is verified that partial rib cracks are the most typical damage in AGS. An AGS is then fabricated with embedded FBG sensors and verified that the SHM system is able to measure all rib strains. Subsequently, it is analytically determined that the change in longitudinal-rib strains is the most appropriate mechanical feature for damage detection. Moreover, a statistical outlier analysis is introduced into the SHM system for automatic damage detection. Finally, AGS is established with the SHM system and verified experimentally. Results confirm that the existence of damage and its regions in AGS can be detected with the proposed SHM system.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921707081967.
  • Über diese
    Datenseite
  • Reference-ID
    10561567
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine