Stochastic Optimization of Dissipation Structures Based on Lyapunov Differential Equations and the Full Stress Design Method
Autor(en): |
Yunlong Zhang
Weizhi Xu DongSheng Du Shuguang Wang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 26 Februar 2023, n. 3, v. 13 |
Seite(n): | 665 |
DOI: | 10.3390/buildings13030665 |
Abstrakt: |
This article presents a Lyapunov precise integral-based analysis method for seismic structures with added viscous fluid dampers. This study uses the full stress algorithm as the optimization method, considering the mean square of interstory drifts as the optimization objective, the position of the damper as the optimization object, and the random vibration analysis method as the calculation method to optimize seismic frame structures with viscous dampers. A precise integral solution is derived for the Lyapunov equation based on the general expression of the Lyapunov differential equation for the damping system under the excitation of a nonstationary stochastic process using two types of modulation functions: g(t)=1 and g(t)=t. Finally, the optimal damping arrangement is achieved using this method with a six-layer non-eccentric planar frame. In addition, the optimization results of this study are verified with those in the literature using time-history analysis, which verifies the feasibility and effectiveness of the proposed method. This study provides a method for the optimal configuration of dampers for seismic response of structures, which is beneficial for engineering applications and the protection of seismic structures. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.25 MB
- Über diese
Datenseite - Reference-ID
10712778 - Veröffentlicht am:
21.03.2023 - Geändert am:
10.05.2023