0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

State estimation of magnetorheological suspension of all-terrain vehicle based on a novel adaptive Sage–Husa Kalman filtering

Autor(en):
ORCID
ORCID

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 1, v. 34
Seite(n): 015005
DOI: 10.1088/1361-665x/ad9441
Abstrakt:

For the magnetorheological suspension control system of all-terrain vehicles (ATVs), state estimation is an effective method to obtain system feedback signals that cannot be directly measured by sensors. However, when confronted with modeling errors and sudden changes in sensor noise during complex road driving, conventional estimation methods with fixed parameters encounter challenges in accurately estimating the states of ATV suspension system. To address this issue, this paper introduces a novel adaptive Sage–Husa Kalman filter (ASHKF) algorithm to estimate the sprung and unsprung velocity of ATV suspension system. The algorithm uses exponential weighting function and gradient detection function to adaptively adjust the attenuation coefficient according to the driving conditions of the ATV, thereby realizing real-time correction of the covariance matrix of the prediction error. Ultimately, through simulation and real-vehicle testing, it is demonstrated that the designed ASHKF is able to effectively improve the state estimation accuracy of the speed signal of the suspension system under off-road driving conditions with low-frequency noise and outlying disturbances, and the accuracy is improved by 62.70% compared with that of the conventional Sage–Husa Kalman filter (SHKF).

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ad9441.
  • Über diese
    Datenseite
  • Reference-ID
    10807647
  • Veröffentlicht am:
    17.01.2025
  • Geändert am:
    17.01.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine