Spatial Analysis with Detailed Indoor Building Models for Emergency Services
Autor(en): |
Min-Lung Cheng
Fuan Tsai Tee-Ann Teo |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 25 August 2024, n. 9, v. 14 |
Seite(n): | 2798 |
DOI: | 10.3390/buildings14092798 |
Abstrakt: |
This paper presents a systematic approach to perform spatial analysis with detailed indoor building models for emergency service decision supports. To achieve a more realistic spatial application, this research integrates three-dimensional (3D) indoor building models and their attributes to simulate an emergency evacuation scenario. Indoor building models of a complicated train station with different levels of detail are generated from two-dimensional (2D) floor plans and Building Information Model (BIM) datasets. In addition to the 3D building models, spatial and non-spatial attributes are also associated with the created building models and the objects within them. The ant colony optimization (ACO) algorithm is modified to analyze the indoor building models for emergency service decision support applications. The detailed indoor models and the proposed spatial analysis algorithms are tested in simulated emergency evacuation scenarios to select the best routes during emergency services. The experimental results demonstrate that the proposed system is helpful for selecting the optimal route with the least cost at varying time stamps. Together with the developed spatial analysis framework, they have a great potential for effective decision support during emergency situations. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.34 MB
- Über diese
Datenseite - Reference-ID
10799914 - Veröffentlicht am:
23.09.2024 - Geändert am:
23.09.2024