0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Sparse representation for damage identification of structural systems

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 4, v. 20
Seite(n): 147592172092697
DOI: 10.1177/1475921720926970
Abstrakt:

Identifying damage of structural systems is typically characterized as an inverse problem which might be ill-conditioned due to aleatory and epistemic uncertainties induced by measurement noise and modeling error. Sparse representation can be used to perform inverse analysis for the case of sparse damage. In this article, we propose a novel two-stage sensitivity analysis–based framework for both model updating and sparse damage identification. Specifically, an [Formula: see text] Bayesian learning method is first developed for updating the intact model and uncertainty quantification so as to set forward a baseline for damage detection. A sparse representation pipeline built on a quasi-[Formula: see text] method, for example, sequential threshold least squares regression, is then presented for damage localization and quantification. In addition, Bayesian optimization together with cross-validation is developed to heuristically learn hyperparameters from data, which saves the computational cost of hyperparameter tuning and produces more reliable identification result. The proposed framework is verified by three examples, including a 10-story shear-type building, a complex truss structure, and a shake-table test of an eight-story steel frame. Results show that the proposed approach is capable of both localizing and quantifying structural damage with high accuracy.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921720926970.
  • Über diese
    Datenseite
  • Reference-ID
    10562453
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    09.07.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine