0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Soft Computing Models to Predict Pavement Roughness: A Comparative Study

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2018
Seite(n): 1-8
DOI: 10.1155/2018/5939806
Abstrakt:

Pavement roughness as a critical determinant of public satisfaction can potentially play a major role in road or highway resource allocation to competing pavement resurfacing projects. With this in mind, the aim of the present paper is to develop an accurate model for the prediction of pavement roughness in terms of the International Roughness Index (IRI) using artificial neural networks (ANNs) and support vector machines (SVMs). The modeling is based on pavement roughness data collected periodically for a high-volume motorway during a seven-year period, on a yearly basis. The comparative study of the developed models concludes that the performance of the ANN model is slightly better compared to the SVM in terms of prediction accuracy. Further, the analysis results produce evidence in support of the statement that both models are capable to predict accurately pavement roughness; hence, they are deemed useful for supporting decision making of pavement maintenance and rehabilitation strategies.

Copyright: © 2018 Panos Georgiou et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10176573
  • Veröffentlicht am:
    30.11.2018
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine