0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Smart Aggregate-Based Concrete Stress Monitoring via 1D CNN Deep Learning of Raw Impedance Signals

Autor(en): ORCID


ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , v. 2024
Seite(n): 1-25
DOI: 10.1155/2024/5822653
Abstrakt:

A 1-dimensional convolutional neural network (1D CNN) model is developed to process deep learning of raw impedance signals for smart aggregate (SA)-based concrete stress monitoring. First, the framework of the SA-based stress monitoring using deep learning of raw impedance signals is described. An impedance measurement model is designed for a SA-embedded concrete body under compression. A 1D CNN model is developed for deep learning of raw impedance signals corresponding to various stress levels. Three approaches for concrete stress monitoring are designed to deal with data availability, signal noises, and untrained stress levels. Second, a few SA-embedded concrete cylinders are experimented to measure impedance signals under various stress levels. Finally, the performance of the proposed method is extensively evaluated by investigating the feasibility of the K-fold cross-validation to deal with the data availability and the effects of signal noises and untrained data on the accuracy of stress estimation in the SA-embedded concrete cylinders.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/5822653.
  • Über diese
    Datenseite
  • Reference-ID
    10769970
  • Veröffentlicht am:
    29.04.2024
  • Geändert am:
    29.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine