0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Simplified Calculation Model for Typical Dou-Gong Exposed to Vertical Loads

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 5, v. 12
Seite(n): 689
DOI: 10.3390/buildings12050689
Abstrakt:

Early Chinese traditional timber buildings preserved until now are mainly ancient buildings built in the time of the Song and Yuan dynasties (960–1368 AD). Dou-gongs of these ancient timber buildings are complex structures. Their complexities, however, are difficult to fully consider in large-scale structural analyses. Therefore, it is necessary to develop a reliable simplified modeling of Dou-gongs, which is applicable for large-scale analyses. In this study, the features of Dou-gongs of early Chinese traditional timber buildings were firstly reviewed, referring to the historical literature and on-site investigation. Then, the mechanical behavior of typical Dou-gongs exposed to vertical loads was examined through refined finite element analyses, where the solid elements were adopted and geometric characteristics were considered. According to the results of the load transferring path, a new beam-truss model representing a simplified Dou-gong was developed, and its accuracy was numerically verified. The results showed that the gravity load of the roof above the column is transferred down through the central axis; the weight of the overhang of the roof is transferred diagonally to the bottom of the Dou-gong, passing through the front of the cantilever components; in the collapse condition, the vertical load is transferred to the two sides through horizontal beams. Compared with the results of the refined model, the new beam-truss model proposed shows an acceptable computational accuracy concerning stress, deformation and stiffness, with 90–97% reduction in the calculation time consumption, which makes it suitable for large-scale structural analyses of early Chinese traditional timber buildings.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10679382
  • Veröffentlicht am:
    18.06.2022
  • Geändert am:
    10.11.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine