0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Short-, Medium-, and Long-Term Prediction of Carbon Dioxide Emissions using Wavelet-Enhanced Extreme Learning Machine

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Civil Engineering Journal, , n. 4, v. 9
Seite(n): 815-834
DOI: 10.28991/cej-2023-09-04-04
Abstrakt:

Carbon dioxide (CO2) is the main greenhouse gas responsible for global warming. Early prediction of CO2 is critical for developing strategies to mitigate the effects of climate change. A sophisticated version of the extreme learning machine (ELM), the wavelet enhanced extreme learning machine (W-EELM), is used to predict CO2 on different time scales (weekly, monthly, and yearly). Data were collected from the Mauna Loa Observatory station in Hawaii, which is ideal for global air sampling. Instead of the traditional method (singular value decomposition), a complete orthogonal decomposition (COD) was used to accurately calculate the weights of the ELM output layers. Another contribution of this study is the removal of noise from the input signal using the wavelet transform technique. The results of the W-EELM model are compared with the results of the classical ELM. Various statistical metrics are used to evaluate the models, and the comparative figures confirm the superiority of the applied models over the ELM model. The proposed W-EELM model proves to be a robust and applicable computer-based technology for modeling CO2concentrations, which contributes to the fundamental knowledge of the environmental engineering perspective.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.28991/cej-2023-09-04-04.
  • Über diese
    Datenseite
  • Reference-ID
    10730747
  • Veröffentlicht am:
    30.05.2023
  • Geändert am:
    30.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine