Shear Performance of Demountable High-Strength Bolted Connectors: An Experimental and Numerical Study Based on Reverse Push-Out Tests
Autor(en): |
Peng Deng
Zhi-Wei Niu Yu-Hao Shi Yan Liu Wen-Long Wang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 27 März 2024, n. 4, v. 14 |
Seite(n): | 1052 |
DOI: | 10.3390/buildings14041052 |
Abstrakt: |
Steel–concrete composite beams, essential for large-span structures, benefit from connectors that reduce cracking at the supports. The crack resistance and alignment with sustainable building trends of high-strength bolted connectors have been extensively researched. Nevertheless, only a few studies exist on their load–slip behavior in hogging sections. In this study, the shear performance of high-strength bolted connectors subjected to tension due to hogging moments was studied based on experiments and numerical modeling according to numerous reverse push-out tests. The results revealed that tensile and splitting cracks were produced in the concrete. Their distribution was affected primarily by the concrete strength and bolt diameter; this distribution became denser at decreasing concrete strengths and increasing bolt diameters. Subsequently, an analysis of the out-of-plane displacement and load–slip response was performed to investigate the phenomenon of anchor rod sliding. A cost-effective and time-efficient finite-element (FE) model was developed to investigate the internal microstates of the specimens. It revealed a correlation between bolt cracking, specimen hardening, steel yield, and failure. A correction factor is also proposed for the shear capacity of bolts within concrete subjected to tension. The findings offer insights into the load–slip response of high-strength bolted connectors subjected to hogging moments, aiding in safer, more durable supports for steel–concrete composite beams. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
8.21 MB
- Über diese
Datenseite - Reference-ID
10773359 - Veröffentlicht am:
29.04.2024 - Geändert am:
05.06.2024