0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Shear Behavior of High-Strength and Lightweight Cementitious Composites Containing Hollow Glass Microspheres and Carbon Nanotubes

Autor(en):
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 9, v. 14
Seite(n): 2824
DOI: 10.3390/buildings14092824
Abstrakt:

In this study, an experimental program was conducted to investigate the shear behavior of beams made of high-strength and lightweight cementitious composites (HS-LWCCs) containing hollow glass microspheres and carbon nanotubes. The compressive strength and dry density of the HS-LWCCs were 87.8 MPa and1.52 t/m3, respectively. To investigate their shear behavior, HS-LWCC beams with longitudinal rebars were fabricated. In this test program, the longitudinal and shear reinforcement ratios were considered as the test variables. The HS-LWCC beams were compared with ordinary high-strength concrete (HSC) beams with a compressive strength of 89.3 MPa to determine their differences; the beams had the same reinforcement configuration. The test results indicated that the initial stiffness and shear capacity of the HS-LWCC beams were lower than those of the HSC beams. These results suggested that the low shear resistance of the HS-LWCC beams led to brittle failure. This was attributed to the beams’ low elastic modulus under compression and the absence of a coarse aggregate. Furthermore, the difference in the shear capacity of the HSC and HS-LWCC beams slightly decreased as the shear reinforcement ratio increased. The diagonal compression strut angle and diagonal crack angle of the HS-LWCC beams with shear reinforcement were more inclined than those of the HSC beams. This indicated that the lower shear resistance of the HS-LWCCs could be more effectively compensated for when shear reinforcement is provided and the diagonal crack angle is more inclined. The ultimate shear capacities measured in the tests were compared with various shear design provisions, including those of ACI-318, EC2, and CSA A23.3. This comparison showed that the current shear design provisions considerably overestimate the contribution of concrete to the shear capacity of HS-LWCC beams.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10799843
  • Veröffentlicht am:
    23.09.2024
  • Geändert am:
    23.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine