0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Shallow Foundation Settlement Quantification: Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2020
Seite(n): 1-14
DOI: 10.1155/2020/7381617
Abstrakt:

Settlement simulating in cohesion materials is a crucial issue due to complexity of cohesion soil texture. This research emphasis on the implementation of newly developed machine learning models called hybridized Adaptive Neuro-Fuzzy Inference System (ANFIS) with Particle Swarm Optimization (PSO) algorithm, Ant Colony optimizer (ACO), Differential Evolution (DE), and Genetic Algorithm (GA) as efficient approaches to predict settlement of shallow foundation over cohesion soil properties. The width of footing (B), pressure of footing (qa), geometry of footing (L/B), count of SPT blow (N), and ratio of footing embedment (Df/B) are considered as predictive variables. Nonhomogeneity and inconsistency of employed dataset is a major concern during prediction modeling. Hence, two different modeling scenarios (i) preprocessed dataset (PP) and (ii) nonprocessed (initial) dataset (NP) were inspected. To assess the accuracy of the applied hybrid models and standalone one, multiple statistical metrics were computed and analyzed over the training and testing phases. Results indicated ANFIS-PSO model exhibited an accurate and reliable prediction data intelligent and had the highest predictability performance against all employed models. In addition, results demonstrated that data preprocessing is highly essential to be performed prior to building the predictive models. Overall, ANFIS-PSO model showed a robust machine learning for settlement prediction.

Copyright: © 2020 Mariamme Mohammed et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10414044
  • Veröffentlicht am:
    26.02.2020
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine