0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Computer-Aided Civil and Infrastructure Engineering, , n. 17, v. 39
Seite(n): 2642-2661
DOI: 10.1111/mice.13315
Abstrakt:

This study proposes a novel self‐training framework for unsupervised domain adaptation in the segmentation of concrete wall cracks using accumulated crack data. The proposed method incorporates Bayesian neural networks for uncertainty estimation of pseudo‐labels, and spatial priors of cracks for screening noisy labels. Experiments demonstrate that the proposed approach achieves significant improvements in F1 score. Comparing the F1 scores, Bayesian DeepLabv3+ and Bayesian U‐Net showed performance improvements of 0.0588 and 0.1501, respectively, after domain adaptation. Furthermore, the integration of Stable Diffusion for few‐shot image generation enhances domain adaptation performance by 0.0332. The proposed framework enables high‐precision crack segmentation with as few as 100 target images, which can be easily obtained at the site, reducing the cost of model deployment in infrastructure maintenance. The study also investigates the optimal number of iterations for domain adaptation based on the uncertainty score, providing insights for practical implementation. The proposed method contributes to the development of efficient and automated structural health monitoring using AI.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1111/mice.13315.
  • Über diese
    Datenseite
  • Reference-ID
    10791671
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine