Risk Propagation Model and Simulation of an Assembled Building Supply Chain Network
Autor(en): |
Yingchen Wang
Ran Sun Liyuan Ren Xiaoxiao Geng Xiangmei Wang Ling Lv |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 24 März 2023, n. 4, v. 13 |
Seite(n): | 981 |
DOI: | 10.3390/buildings13040981 |
Abstrakt: |
In recent years, the prefabricated building supply chain has received strong support from the government and has developed rapidly, but there are various risks in the operation process. In this paper, on the basis of considering asymptomatic infections and relapse, this paper establishes a risk transmission model that considers a recurrent Susceptible–Exposed–Asymptomatic–Infectious–Recovered (abbr. SEAIR) model, systematically analyses the risks in the supply chain, and calculates the risk balance point to conclude that the risks can exist in the supply chain for a long time. By drawing a causal circuit diagram, the relationship between the influencing factors in the process of risk transmission is found, establishing a stock flow map to explore the law of risk propagation. The simulation results using Vensim PLE software show that the five influencing factors of infection rate, transmission rate, government financial support, government policy supervision, and immunity loss ratio have an important impact on the number of risk-unknown enterprises, risk-latent enterprises, risk transmission enterprises, and infection rehabilitation enterprises in risk transmission, and relevant countermeasures to deal with risk transmission in the supply chain are proposed. Theoretically, this paper broadens the ideas for improving infectious disease models. From the management point of view, it reveals how the prefabricated building supply chain enables enterprises to improve their ability to deal with risks through the risk propagation model, providing reference and helping to manage the risks faced by the prefabricated building supply chain. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
5.54 MB
- Über diese
Datenseite - Reference-ID
10728415 - Veröffentlicht am:
30.05.2023 - Geändert am:
01.06.2023