Review of Water Leak Detection Methods in Smart Building Applications
Autor(en): |
Nurfarah Anisah Mohd Yussof
Hann Woei Ho |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 20 September 2022, n. 10, v. 12 |
Seite(n): | 1535 |
DOI: | 10.3390/buildings12101535 |
Abstrakt: |
In recent years, the identification of water leak detection methods has entered a wide range of fields. Pipeline failures in water distribution networks lead to the loss of a considerable amount of high-quality water. Different monitoring methods are often used to identify the failing infrastructure, which is subsequently maintained. Increased pressures on a fast-expanding water supply network needs the development of better leak detection technologies, particularly for use in smart building applications. This paper offers a detailed examination of water leak detection methods, intending to determine the state-of-the-art approaches and make recommendations for future research. It is designed to demonstrate smart buildings, but it may also be utilized in another similar context. This review concludes that, despite prior achievements, there is still much room for improvement, particularly in the domain of real-time models for earlier leak detection methods in building automation. These models should enable the integration of leakage detection, evaluation, and control system that, with minimal human interaction, may be customized for efficient leakage detection in real-world circumstances. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.12 MB
- Über diese
Datenseite - Reference-ID
10700097 - Veröffentlicht am:
11.12.2022 - Geändert am:
15.02.2023