Review of Prediction Models for Chloride Ion Concentration in Concrete Structures
Autor(en): |
Jiwei Ma
Qiuwei Yang Xinhao Wang Xi Peng Fengjiang Qin |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 24 Dezember 2024, n. 1, v. 15 |
Seite(n): | 149 |
DOI: | 10.3390/buildings15010149 |
Abstrakt: |
Chloride ion concentration significantly impacts the durability of reinforced concrete, particularly regarding corrosion. Accurately assessing how this concentration varies with the age of structures is crucial for ensuring their safety and longevity. Recently, several predictive models have emerged to analyze chloride ion concentration over time, classified into empirical models and machine learning models based on their data processing techniques. Empirical models directly relate chloride ion concentration to the age of concrete through specific functions. Their primary advantage lies in their low data requirements, making them convenient for engineering use. However, these models often fail to account for multiple influencing factors, which can limit their accuracy. Conversely, machine learning models can handle various factors simultaneously, providing a more detailed understanding of how chloride concentration evolves. When adequately trained with sufficient experimental data, these models generally offer superior prediction accuracy compared to mathematical models. The downside is that they necessitate a larger dataset for training, which can complicate their practical application. Future research could focus on combining machine learning and empirical models, leveraging their respective strengths to achieve a more precise evaluation of chloride ion concentration in relation to structural age. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
0.93 MB
- Über diese
Datenseite - Reference-ID
10815930 - Veröffentlicht am:
03.02.2025 - Geändert am:
03.02.2025