Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models
Autor(en): |
Gusfan Halik
Nadjadji Anwar Budi Santosa Edijatno |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2015, v. 2015 |
Seite(n): | 1-9 |
DOI: | 10.1155/2015/515376 |
Abstrakt: |
Climate change has significant impacts on changing precipitation patterns causing the variation of the reservoir inflow. Nowadays, Indonesian hydrologist performs reservoir inflow prediction according to the technical guideline of Pd-T-25-2004-A. This technical guideline does not consider the climate variables directly, resulting in significant deviation to the observation results. This research intends to predict the reservoir inflow using the statistical downscaling (SD) of General Circulation Model (GCM) outputs. The GCM outputs are obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR Reanalysis). A new proposed hybrid SD model named Wavelet Support Vector Machine (WSVM) was utilized. It is a combination of the Multiscale Principal Components Analysis (MSPCA) and nonlinear Support Vector Machine regression. The model was validated at Sutami Reservoir, Indonesia. Training and testing were carried out using data of 1991–2008 and 2008–2012, respectively. The results showed that MSPCA produced better extracting data than PCA. The WSVM generated better reservoir inflow prediction than the one of technical guideline. Moreover, this research also applied WSVM for future reservoir inflow prediction based on GCM ECHAM5 and scenario SRES A1B. |
Copyright: | © 2015 Gusfan Halik et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.85 MB
- Über diese
Datenseite - Reference-ID
10176889 - Veröffentlicht am:
07.12.2018 - Geändert am:
02.06.2021