0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research on wireless monitoring system and algorithms for preload force utilizing machine learning and electromechanical impedance

Autor(en): ORCID


ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 9, v. 33
Seite(n): 095006
DOI: 10.1088/1361-665x/ad6658
Abstrakt:

The root mean square deviation is a common way to measure the electromechanical impedance of piezoceramic transducers that are used for traditional preload monitoring. However, due to the impedance signal’s high sensitivity to temperature, most current research is carried out under the same temperature conditions to avoid its effects. Even so, it is impossible to ignore the temperature factor in practical engineering, which hinders the application of impedance technology. Therefore, this paper proposes a novel approach for preload monitoring in actual engineering: using a wireless impedance signal acquisition platform to collect long-distance impedance signals and then establishing a predicted model based on machine learning (ML) considering the temperature. The wireless impedance signal acquisition platform includes a smart washer, a piezoelectric impedance wireless sensing device, and the host computer software. This test established a dataset under various operating conditions and developed a machine-learning-based predictive model. After comparing five typical ML algorithms, it was discovered that XGBoost performed better in prediction accuracy and generalization ability. Moreover, the Shapley additive explanation method is utilized to further analyze and interpret the XGBoost model. It indicates that ML primarily relies on numerical features (such as the area of each subinterval) to identify the impedance signal and predict the prestress, whereas information features (such as temperature value, peak, etc.) have little influence on the model’s output. Finally, the results above demonstrate that the ML-based models can predict the preload at different temperatures, effectively reducing temperature interference.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ad6658.
  • Über diese
    Datenseite
  • Reference-ID
    10790744
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine