0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research on the Prediction of Rigid Frame-Continuous Girder Bridge Deflection Using BP and RBF Neural Networks

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Stavební obzor - Civil Engineering Journal, , n. 2, v. 32
Seite(n): 257-270
DOI: 10.14311/cej.2023.02.0020
Abstrakt:

To solve the problem of excessive deflection in the post-operation process of a rigid frame-continuous girder bridge and provide a basis for the setting of its initial camber, this paper, based on the results of finite element analysis, uses three methods to predict and verify the deflection of a rigid frame-continuous girder bridge. The results show that the average deflection method can be used to fit the average deflection value for a relatively long period of time and predict the average deflection value for the next longer period of time. Both the back-propagation (BP) neural network model and the radial basis function (RBF) neural network model can predict deflection well, but the RBF neural network model has higher prediction accuracy, with a mean absolute error (MAE) of 2.55 cmm and a relative error not exceeding 1%. The prediction model established by the RBF neural network has higher stability, better generalization ability, and better overall prediction performance. The established model has some reference significance for similar engineering projects and can achieve the optimization of structural parameters.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.14311/cej.2023.02.0020.
  • Über diese
    Datenseite
  • Reference-ID
    10739820
  • Veröffentlicht am:
    02.09.2023
  • Geändert am:
    02.09.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine