Research on the Large Deformation Prediction Model and Supporting Measures of Soft Rock Tunnel
Autor(en): |
Junying Rao
Yonghu Tao Peng Xiong Chongxin Nie Hao Peng Yanghao Xue Zuowei Xi |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2020, v. 2020 |
Seite(n): | 1-13 |
DOI: | 10.1155/2020/6630546 |
Abstrakt: |
The weak surrounding rock has the characteristics of easy softening, poor integrity, low mechanical strength, etc., which makes it easy to induce different degrees of deformation and damage under excavation disturbance and then seriously affects the stability of the tunnel. Carrying out soft rock tunnel deformation prediction research and designing the supporting structure according to the predicted value is of great significance to engineering construction and design. Based on the grey theory, the large deformation of the vault, shoulder, and waist of the soft rock tunnel are predicted, and then the specific bolt support is designed in the maximum predicted value (Smax·R) area. The control effects of different bolts, spacing (d), length (L) on the maximum displacement (Smax·M), and maximum stress (σmax·M) the surrounding rock are analyzed by numerical simulation. Results show that the gray model has high prediction accuracy, the best prediction time is one week, and the maximum error is only 2.99%; with the decrease in d, resin bolt support has a significant supporting effect compared with mortar bolt support, with Smax.M and σmax·M reduced by 64.38% and 10.35%, respectively; as the L of bolt increases, compared with the mortar bolt support, the resin bolt support has a more obvious restraining effect on the surrounding rock deformation, and Smax·M and σmax·M are reduced by 28.20% and 10.00%, respectively; when 4.5 m < L < 6.0 m and 0.6 m < d < 0.7 m, resin bolt support should be adopted; in other ranges, mortar bolt support or resin bolt support has a less significant difference in controlling surrounding rock deformation. |
Copyright: | © Junying Rao et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.27 MB
- Über diese
Datenseite - Reference-ID
10535961 - Veröffentlicht am:
01.01.2021 - Geändert am:
02.06.2021