0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research on the Fault Diagnosis Method of Mine Fan Based on Sound Signal Analysis

Autor(en):
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2021
Seite(n): 1-9
DOI: 10.1155/2021/9650644
Abstrakt:

The underground local fan and auxiliary fan also play a vital role in the underground air quality, compared with the system fan. However, the number of underground local fans and auxiliary fans is large and widely distributed, which is disadvantageous to adopt the same method of online monitoring and fault diagnosis method as the system fan. In order to find a new fault diagnosis method, which is cost-effective and reliable, this paper proposes a fault diagnosis method based on sound signal. It analyzes the source of fan noise and studies the overall scheme of mine fan fault diagnosis expert system based on sound signal. The fault expert system consists of four parts: signal acquisition and noise elimination, feature extraction, state recognition, and fault diagnosis. Its principle is briefly introduced. The denoising method of wavelet is adopted in this paper. Wavelet packet is used to extract the characteristics of sound signal, and the energy size and energy proportion of each frequency component are used as the basis of knowledge acquisition and reasoning. Through the analysis of the measured signals of the fan in the normal operating state, the feature vectors were extracted as the basis for the discrimination of the normal state after noise elimination. At the same time, the audio processing software was used to simulate the sound signals in three fault states. Then, the feature vector of the fault state is extracted, which is obviously different from that of the fan in the normal operation. As the basis of fault state analysis of the expert system, it lays the foundation for the realization of the expert system of mine fan equipment running state diagnosis.

Copyright: © 2021 Shijie Song et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10628293
  • Veröffentlicht am:
    05.09.2021
  • Geändert am:
    17.02.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine