Research on Search Method of Potential Sliding Surface of Rock Slope with Embedded Structural Plane
Autor(en): |
Aijun Yao
Jian Lu Zhizhou Tian Yanyan Li |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2021, v. 2021 |
Seite(n): | 1-9 |
DOI: | 10.1155/2021/3296844 |
Abstrakt: |
Slope stability has been a key issue in the field of geotechnical engineering. Determining the potential sliding surface of a slope is an important link in evaluating the stability of the slope. For rock slope with embedded structural plane, the potential sliding surface is greatly affected by the embedded structural plane. When determining the potential sliding surface, the influence of the position of the embedded structural plane should be considered. According to the distribution characteristics of the embedded structural plane of the rock slope, the structural plane in rock slope is divided into two types: (1) front embedded and (2) rear embedded structural plane. Considering the influence of two types of structural planes, a search method for potential sliding surfaces of rock slope is proposed combined with the finite random tracking method. The location of the sliding surface is controlled through the cut-in point, cut-out point, and arc height so that the range of search variables does not need empirical assumption. An engineering example is used to verify the search method. The results show that the method could accurately obtain the potential sliding surface of the rock slope with embedded structural plane, which proves the effectiveness of the search method. |
Copyright: | © Aijun Yao et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.96 MB
- Über diese
Datenseite - Reference-ID
10638312 - Veröffentlicht am:
30.11.2021 - Geändert am:
17.02.2022