A Reliable PSO-based ANN Approach for Predicting Unconfined Compressive Strength of Sandstones
Autor(en): |
Yasin Abdi
Ehsan Momeni Reza Rashidi Khabir |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | The Open Construction and Building Technology Journal, 18 Februar 2020, n. 1, v. 14 |
Seite(n): | 237-249 |
DOI: | 10.2174/1874836802014010237 |
Abstrakt: |
Background:The reliable determination of geomechanical parameters of rocks such as Unconfined Compressive Strength (UCS) using laboratory methods is problematic and time-consuming. In this regard, the construction of reliable predictive models for assessing the UCS is of advantage. Objective:The main purpose of this work is to propose the use of a reliable PSO-based ANN approach for predicting the UCS of sandstones. Methods:For this purpose, laboratory tests were performed on 60 sandstone specimens. The laboratory tests comprise P-wave velocity, dry density, Schmidt hardness and UCS. Apart from the latter, the other laboratory tests were set as model inputs. Prediction performance of the constructed model was assessed according to the criteria including coefficient of determination (R²), Root Mean Squared Error (RMSE) and Variance Account For (VAF). Results:Results (R²= 0.974 and RMSE = 0.086 and VAF = 97.5) showed the reliability of the constructed PSO-based ANN model to predict UCS of sandstones. Conclusion:Hence, this study recommends utilizing PSO-based ANN as a feasible tool for assessing UCS of sandstones. Nevertheless, further research is suggested for model generalization purposes. |
Copyright: | © 2020 Yasin Abdi, Ehsan Momeni, Reza Rashidi Khabir |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.48 MB
- Über diese
Datenseite - Reference-ID
10434371 - Veröffentlicht am:
11.09.2020 - Geändert am:
02.06.2021