0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Reinforcement Learning in Urban Network Traffic-signal Control

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Jordan Journal of Civil Engineering, , n. 4, v. 17
DOI: 10.14525/jjce.v17i4.12
Abstrakt:

Traffic-signal recognition and anticipation are essential for advanced driver-assistance systems. Due to its superior performance in data categorization, deep learning has gained significance in vision-based object identification in recent years. When examining the application of deep learning to develop a high-performance urban traffic-signal detection system, the input image's colour space, as well as the deep-learning network model are examined as part of the system's primary components. Using distinct network models based on the Faster R-CNN algorithm and colour spaces in simulations helps the RGB (red, green and blue) colour space and the Faster R-CNN model detects the method of network target. A series of fundamental convolutional networks is used depending on pooling layers to extract the features of maps of images for training datasets, where the data may be used to develop a system for traffic-signal detection and create a new traffic signal that requires image recognition. KEYWORDS: Bounding boxes, Faster R-CNN, Modelled environments, Simulation, Traffic-signal detecting system.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.14525/jjce.v17i4.12.
  • Über diese
    Datenseite
  • Reference-ID
    10744147
  • Veröffentlicht am:
    28.10.2023
  • Geändert am:
    17.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine