0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Recognition of Concrete Surface Cracks Based on Improved TransUNet

Autor(en):
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 4, v. 15
Seite(n): 541
DOI: 10.3390/buildings15040541
Abstrakt:

Concrete surface crack detection is a critical problem in the health monitoring and maintenance of engineering structures. The existence and development of cracks may lead to the deterioration of structural performance, potentially causing serious safety accidents. However, detecting cracks accurately remains challenging due to various factors such as uneven lighting, noise interference, and complex backgrounds, which often lead to incomplete or false detections. Traditional manual inspection methods are subjective, inefficient, and costly, while existing deep learning-based approaches still have the problem of insufficient precision and completeness. Therefore, this paper proposes a new crack detection model based on an improved TransUNet: AG-TransUNet, an adaptive multi-head self-attention mechanism, and a gated mechanism-based decoding module (GRU-T) is introduced to improve the accuracy and completeness of crack detection. Experimental results show that the AG-TransUNet outperforms the original TransUNet with a 4.05% increase in precision, a 2.59% improvement in F1-score, and a 0.36% enhancement in IoU on the CFD dataset. The AG-TransUNet achieves a 2.21% increase in precision, a 5.63% improvement in F1-score, and a 9.07% enhancement in IoU on the concrete crack dataset. In addition, in order to further quantitatively analyze the crack width, the orthogonal skeleton method is used to calculate the maximum width of a single crack to provide a reference for engineering maintenance. Experiments show that the maximum error between the real values and detection results is about 5%. Therefore, the proposed method better meets the needs of crack detection in practical engineering applications and provides a solution for improving the efficiency of crack detection.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10820617
  • Veröffentlicht am:
    11.03.2025
  • Geändert am:
    11.03.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine