0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Probabilistic fatigue damage prognosis using surrogate models trained via three-dimensional finite element analysis

Autor(en):






Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 3, v. 16
Seite(n): 291-308
DOI: 10.1177/1475921716643298
Abstrakt:

Utilizing inverse uncertainty quantification techniques, structural health monitoring (SHM) can be integrated with damage progression models to form a probabilistic prediction of a structure’s remaining useful life (RUL). However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In this paper, high-fidelity fatigue crack growth simulation times are reduced by three orders of magnitude using a model based on a set of surrogate models trained via three-dimensional finite element analysis. The developed crack growth modeling approach is experimentally validated using SHM-based damage diagnosis data. A probabilistic prediction of RUL is formed for a metallic, single-edge notch tension specimen with a fatigue crack growing under mixed-mode conditions.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921716643298.
  • Über diese
    Datenseite
  • Reference-ID
    10561960
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine