0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Pro-active warning system for the crossroads at construction sites based on computer vision

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Engineering, Construction and Architectural Management, , n. 5, v. 27
Seite(n): 1145-1168
DOI: 10.1108/ecam-06-2019-0325
Abstrakt:

Purpose

To improve insufficient management by artificial management, especially for traffic accidents that occur at crossroads, the purpose of this paper is to develop a pro-active warning system for crossroads at construction sites. Although prior studies have made efforts to develop warning systems for construction sites, most of them paid attention to the construction process, while the accidents that occur at crossroads were probably overlooked.

Design/methodology/approach

By summarizing the main reasons resulting for those accidents occurring at crossroads, a pro-active warning system that could provide six functions for countermeasures was designed. Several approaches relating to computer vision and a prediction algorithm were applied and proposed to realize the setting functions.

Findings

One 12-hour video that films a crossroad at a construction site was selected as the original data. The test results show that all designed functions could operate normally, several predicted dangerous situations could be detected and corresponding proper warnings could be given. To validate the applicability of this system, another 36-hour video data were chosen for a performance test, and the findings indicate that all applied algorithms show a significant fitness of the data.

Originality/value

Computer vision algorithms have been widely used in previous studies to address video data or monitoring information; however, few of them have demonstrated the high applicability of identification and classification of the different participants at construction sites. In addition, none of these studies attempted to use a dynamic prediction algorithm to predict risky events, which could provide significant information for relevant active warnings.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1108/ecam-06-2019-0325.
  • Über diese
    Datenseite
  • Reference-ID
    10576904
  • Veröffentlicht am:
    26.02.2021
  • Geändert am:
    26.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine