0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Private Renting vs. Mortgage Home Buying: Case of British Housing Market—A Bayesian Network and Directed Acyclic Graphs Approach

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 2, v. 12
Seite(n): 189
DOI: 10.3390/buildings12020189
Abstrakt:

The worsening of housing problems in many countries has become a topic of global interest. Researchers point to a variety of factors that influence individual housing tenure decisions. Our study is based on longitudinal English Housing Survey (EHS) data (2008–2009 to 2019–2020, with survey years matching financial years, i.e., running April-March) and identifies flows between different forms of housing tenure in the U.K. and analyses conditional dependencies of a range of EHS variables using a directed acyclic graph (DAG). More specifically, we take into account variables such as first_time buyers (FTB), mortgage payments, rent payments, share of mortgage/rent in household income, and receipt of housing benefit (HB), with some variables also reflecting a regional breakdown (captured separately for London and England excluding London) to illustrate the complex nature of regional differences in explaining changes in housing tenure. We address some of the problems and challenges of the housing market in the U.K. today, and, in particular, examine what influences private renters and those buying with a mortgage. A key conclusion from this study is that housing benefit does not necessarily ease the way for private renters into their own housing. The study is quantitative in nature and uses the English Housing Survey and Bayesian network (BN) analysis. Unlike traditional methods, such as multiple regression or panel regression, where the researcher somehow suggests the type of a relationship between certain variables, BN’s learning algorithm analyses different iterations between variables and finds the most appropriate relationships between them.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10657700
  • Veröffentlicht am:
    17.02.2022
  • Geändert am:
    01.06.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine