0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Predictive Model of Clothing Insulation in Naturally Ventilated Educational Buildings

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 4, v. 13
Seite(n): 1002
DOI: 10.3390/buildings13041002
Abstrakt:

Providing suitable indoor thermal conditions in educational buildings is crucial to ensuring the performance and well-being of students. International standards and building codes state that thermal conditions should be considered during the indoor design process and sizing of heating, ventilation and air conditioning systems. Clothing insulation is one of the main factors influencing the occupants’ thermal perception. In this context, a field survey was conducted in higher education buildings to analyse and evaluate the clothing insulation of university students. The results showed that the mean clothing insulation values were 0.60 clo and 0.72 clo for male and female students, respectively. Significant differences were found between seasons. Correlations were found between indoor and outdoor air temperature, radiant temperature, the temperature measured at 6 a.m., and running mean temperature. Based on the collected data, a predictive clothing insulation model, based on an artificial neural network (ANN) algorithm, was developed using indoor and outdoor air temperature, radiant temperature, the temperature measured at 6 a.m. and running mean temperature, gender, and season as input parameters. The ANN model showed a performance of R2 = 0.60 and r = 0.80. Fifty percent of the predicted values differed by less than 0.1 clo from the actual value, whereas this percentage only amounted to 32% if the model defined in the ASHRAE-55 Standard was applied.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10728314
  • Veröffentlicht am:
    30.05.2023
  • Geändert am:
    01.06.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine