0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of Torque Capacity in Circular Concrete-Filled Double-Skin Tubular Members under Pure Torsion via Machine Learning and Shapley Additive Explanations Interpretation

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 4, v. 14
Seite(n): 1040
DOI: 10.3390/buildings14041040
Abstrakt:

The prediction of torque capacity in circular Concrete-Filled Double-Skin Tubular (CFDST) members under pure torsion is considered vital for structural design and analysis. In this study, torque capacity is predicted using machine learning (ML) algorithms, such as Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest (RF), and Decision Tree (DT), which are employed. The interpretation of the results is conducted using Shapley Additive Explanations (SHAPs). The performance of these ML models is evaluated against two traditional analytical formulas that have been proposed and are available in the literature. Through comprehensive analysis, it is shown that superior predictive capabilities are possessed by the CatBoost and XGBoost models, characterized by high R2 values and minimal mean errors. Additionally, insights into the influence of input features are provided by SHAP interpretation, with an emphasis on key parameters such as concrete compressive strength and steel tube dimensions. The gap between empirical models and ML techniques is bridged by this study, offering engineers a more accurate and efficient tool for CFDST structural design. Significant implications for optimizing CFDST column designs and advancing structural engineering practices are presented by these findings. Directions for future research include the further refinement of ML models and the integration of probabilistic analyses for enhanced structural resilience. Overall, the transformative potential of ML and SHAP interpretation in advancing the field of structural engineering is showcased by this study.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10773933
  • Veröffentlicht am:
    29.04.2024
  • Geändert am:
    05.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine