0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of the Unconfined Compressive Strength of a One-Part Geopolymer-Stabilized Soil Using Deep Learning Methods with Combined Real and Synthetic Data

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 9, v. 14
Seite(n): 2894
DOI: 10.3390/buildings14092894
Abstrakt:

This study focused on exploring the utilization of a one-part geopolymer (OPG) as a sustainable alternative binder to ordinary Portland cement (OPC) in soil stabilization, offering significant environmental advantages. The unconfined compressive strength (UCS) was the key index for evaluating the efficacy of OPG in soil stabilization, traditionally demanding substantial resources in terms of cost and time. In this research, four distinct deep learning (DL) models (Artificial Neural Network [ANN], Backpropagation Neural Network [BPNN], Convolutional Neural Network [CNN], and Long Short-Term Memory [LSTM]) were employed to predict the UCS of OPG-stabilized soft clay, providing a more efficient and precise methodology. Among these models, CNN exhibited the highest performance (MAE = 0.022, R2 = 0.9938), followed by LSTM (MAE = 0.0274, R2 = 0.9924) and BPNN (MAE = 0.0272, R2 = 0.9921). The Wasserstein Generative Adversarial Network (WGAN) was further utilized to generate additional synthetic samples for expanding the training dataset. The incorporation of the synthetic samples generated by WGAN models into the training set for the DL models led to improved performance. When the number of synthetic samples achieved 200, the WGAN-CNN model provided the most accurate results, with an R2 value of 0.9978 and MAE value of 0.9978. Furthermore, to assess the reliability of the DL models and gain insights into the influence of input variables on the predicted outcomes, interpretable Machine Learning techniques, including a sensitivity analysis, Shapley Additive Explanation (SHAP), and 1D Partial Dependence Plot (PDP) were employed for analyzing and interpreting the CNN and WGAN-CNN models. This research illuminates new aspects of the application of DL models with training on real and synthetic data in evaluating the strength properties of the OPG-stabilized soil, contributing to saving time and cost.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10799817
  • Veröffentlicht am:
    23.09.2024
  • Geändert am:
    23.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine