0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of the Debonding Failure of Beams Strengthened with FRP through Machine Learning Models

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 3, v. 13
Seite(n): 608
DOI: 10.3390/buildings13030608
Abstrakt:

Plate end (PE) debonding and intermediate crack (IC) debonding are the two main failure modes of beams strengthened with fiber-reinforced polymer (FRP) in flexure. Therefore, it is essential to clarify the force state of the structure when debonding occurs in strengthened beams. This paper collected 229 beams with debonding failure as the database, of which 128 were PE debonding and 101 were IC debonding. Correlation and grey correlation analysis were used to establish the indicator systems for predicting PE and IC debonding and to identify the critical indicators among them. Five machine learning models, linear regression, ridge regression, decision trees, random forests, and back propagation (BP) neural networks, were used to build the two debonding prediction models. Optimization of the best prediction among the five machine learning models took place using the Dung Beetle Optimizer (DBO) algorithm, which has competitive performance with state-of-the-art optimization approaches in terms of convergence rate, solution accuracy, and stability. Finally, the optimal prediction model was compared with the models suggested by codes, and it was found that the established model can well predict PE and IC debonding.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10712502
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine